Sensitive Items in Privacy Preserving - Association Rule Mining
نویسندگان
چکیده
The concept of Privacy-Preserving has recently been proposed in response to the concerns of preserving personal or sensible information derived from data mining algorithms. For example, through data mining, sensible information such as private information or patterns may be inferred from non-sensible information or unclassified data. As large repositories of data contain confidential rules that must be protected before published, association rule hiding becomes one of important privacy preserving data mining problems. There have been two types of privacy concerning data mining. Output privacy tries to hide the mining results by minimally altering the data. Input privacy tries to manipulate the data so that the mining result is not affected or minimally affected. For some applications certain sensitive predictive rules are hidden that contain given sensitive items. To identify the sensitive items an algorithm SENSIDENT is proposed. The results of the work have been given.
منابع مشابه
Data sanitization in association rule mining based on impact factor
Data sanitization is a process that is used to promote the sharing of transactional databases among organizations and businesses, it alleviates concerns for individuals and organizations regarding the disclosure of sensitive patterns. It transforms the source database into a released database so that counterparts cannot discover the sensitive patterns and so data confidentiality is preserved ag...
متن کاملIntroducing an algorithm for use to hide sensitive association rules through perturb technique
Due to the rapid growth of data mining technology, obtaining private data on users through this technology becomes easier. Association Rules Mining is one of the data mining techniques to extract useful patterns in the form of association rules. One of the main problems in applying this technique on databases is the disclosure of sensitive data by endangering security and privacy. Hiding the as...
متن کاملA New Approach to Sensitive Rule Hiding
Privacy preserving data mining is a novel research direction in data mining and statistical databases, which has recently been proposed in response to the concerns of preserving personal or sensible information derived from data mining algorithms. There have been two types of privacy proposed concerning data mining. The first type of privacy, called output privacy, is that the data is altered s...
متن کاملSensitive Itemset Hiding in Multi-level Association Rule Mining
-Enormous numbers of intelligent data mining techniques are in usage to discover hidden patterns. Especially Association rule mining has a high impact on business improvement. However mining association rules at multiplelevel may lead to discovery of more specific and concrete knowledge from data. Privacy is needed in order to withstand the business competence. Now-a-days privacy preserving dat...
متن کاملAssociation Rule Hiding for Data Mining
The best ebooks about Association Rule Hiding For Data Mining that you can get for free here by download this Association Rule Hiding For Data Mining and save to your desktop. This ebooks is under topic such as association rule hiding for data mining springer association rule hiding for data mining advances in association rule hiding knowledge and data engineering an efficient association rule ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JIKM
دوره 7 شماره
صفحات -
تاریخ انتشار 2008